Experimental Realization of an Intrinsic Magnetic Topological Insulator *

Yan Gong(龚演)1, Jingwen Guo(郭景文)1, Jiaheng Li(李佳恒)1, Kejing Zhu(朱科静)1, Menghan Liao(廖孟涵)1, Xiaohui Liu(刘效治)2, Qinghua Zhang(张庆华)2, Lin Gu(谷林)2, Lin Tang(唐林)1, Xiao Feng(冯晓)1, Ding Zhang(张定)1,3,4, Wei Li(李伟)1,4, Canli Song(宋灿立)1,4, Lili Wang(王立莉)1,4, Pu Yu(于浦)1,4, Xi Chen(陈曦)1,4, Yu Yu Wang(王亚玉)1,3,4, Hong Yao(姚宏)1,4,5, Wenwu Duan(段文晖)1,3,4, Yong Xu(徐勇)1,4,6,**, Shou-Cheng Zhang(张首晟)7, Xuefeng Ma(马旭村)1,4, Qi-Kun Xue(薛其坤)1,3,4,**, Ke He(何珂)1,3,4,**

1State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3Beijing Academy of Quantum Information Sciences, Beijing 100193
4Collaborative Innovation Center of Quantum Matter, Beijing 100084
5Institute for Advanced Study, Tsinghua University, Beijing 100084
6RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
7Stanford Center for Topological Quantum Physics, Department of Physics, Stanford University, Stanford, California 94305-4045, USA

(Received 27 May 2019)

An intrinsic magnetic topological insulator (TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of two films of an intrinsic magnetic TI, MnBi_2Te_3, by alternate growth of a Bi_2Te_3 quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypal Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way.

PACS: 68.35.bg, 73.23.Ad, 71.20.Nr, 73.20.At

DOI: 10.1088/0256-307X/36/7/076801

A topological insulator (TI) is non-magnetic, carrying gapless surface electronic states topologically protected by the time-reversal symmetry (TRS).$^{[1,2]}$ Many exotic quantum effects predicted in TIs, however, need the TRS to be broken by acquired magnetic order.$^{[3]}$ A remarkable example is the quantum anomalous Hall (QAH) effect, a zero-magnetic-field quantum Hall effect that had been sought for over two decades until it was observed in a magnetic TI with ferromagnetic (FM) order induced by magnetic dopants.$^{[3–7]}$ The experimental realization of the QAH effect paved the road for hunting many other novel quantum effects in TRS-broken TIs, for example, topological magnetoelectric (TME) effects and chiral Majorana modes.$^{[3,8,9]}$ However, magnetically doped TIs are notorious “dirty” materials for experimental studies: the randomly distributed magnetic impurities induce strong inhomogeneity in the electronic structure and magnetic properties, and the sample quality is sensitive to the details of the molecular beam epitaxy (MBE) growth conditions.$^{[10–12]}$

Such a complicated system is often a nightmare for some delicate experiments such as those on chiral Majorana modes and topological quantum computation, and the strong inhomogeneity is believed to contribute to the extremely low temperature (usually <100 mK) required by the QAH effect.$^{[13]}$ An ideal magnetic TI is an intrinsic one, namely a stoichiometric compound with orderly arranged and exchange-coupled magnetic atoms, which features a magnetically ordered ground state, but becomes a TI when the TRS recovers above the magnetic ordering temperature. A thin film of such an intrinsic magnetic TI could be a congenital QAH insulator with homogeneous electronic and magnetic properties, and presumably higher QAH working temperature. Yet few experimental progresses were achieved in this direction in spite of several interesting theoretical proposals raised in past years.$^{[14–16]}$

Some stoichiometric ternary tetradymite compounds, which can be considered as variants of well-studied Bi_2Te_3 family 3D TIs, have been found to be also 3D TIs.$^{[17]}$ A simplest system is XB_2T_4 where X is Pb, Sn or Ge, B is Bi or Sb, and T is Te or Se. Such a compound is a layered material with each septuple-layer (SL) composed of single atomic sheets stacking in the sequence T–B–T–X–T–B–T. If X is a magnetic element, there will be a chance that XB_2T_4 is an intrinsic magnetic TI.
A few works have observed MnBi$_2$Te(Se)$_4$ in multocrystalline samples, or as the second phase or surface layer of Bi$_2$Te(Se)$_3$, without figuring out their topological electronic properties.\cite{18-20} Interestingly, an SL of MnBi$_2$Te(Se)$_4$ on Bi$_2$Te(Se)$_3$ was reported to be able to open a large magnetic gap at the topological surface states of the latter.\cite{20,21}

In this study, we find that high-quality MnBi$_2$Te$_4$ films can be fabricated in an SL-by-SL manner by alternate growth of 1 quintuple layer (QL) of Bi$_4$Te$_3$ and 1 bilayer (BL) of MnTe with MBE. Amazingly, MnBi$_2$Te$_4$ films with the thickness $d \geq 2$ SLs show Dirac-type surface states, a characteristic of a 3D TI. Low temperature magnetic and transport measurements as well as first-principles calculations demonstrate that MnBi$_2$Te$_4$ is an intrinsic antiferromagnetic (AFM) TI, composed of ferromagnetic SLs with a perpendicular easy axis, which are coupled antiferromagnetically between neighboring SLs. Remarkably, a thin film of such an AFM TI thin film with FM surfaces is expected to be an intrinsic QAH insulator or axion insulator depending on the film thickness.

To prepare a MnBi$_2$Te$_4$ film, we first grow a 1-QL Bi$_2$Te$_3$ film on a Si(111) or SrTiO$_3$(111) substrate (see the supplementary materials).\cite{22} Mn and Te are then co-evaporated onto Bi$_2$Te$_3$ surface with the coverage corresponding to a MnTe BL with the sample kept at 200°C. Post-annealing at the same temperature for 10 min is carried out to improve the crystalline quality. This leads to the formation of an SL of MnBi$_2$Te$_4$ [see the schematic in Fig. 1(a)],\cite{20} as experimentally proved and theoretically explained below. Then on the MnBi$_2$Te$_3$ surface, we grow another QL of Bi$_2$Te$_3$, which is followed by deposition of another BL of MnTe and post-annealing. By repeating this procedure, we can grow a MnBi$_2$Te$_4$ film SL by SL in a controlled way, in principle up to any desired thickness.

The MnBi$_2$Te$_4$ film shows sharp 1×1 reflection high-energy electron diffraction streaks (Fig. S1) indicating its flat surface morphology and high crystalline quality. The x-ray diffraction (XRD) pattern [Fig. 1(c), taken from a 7-SL MnBi$_2$Te$_4$ film] exhibits a series of peaks (marked by blue arrows), most of which can neither be attributed to Bi$_2$Te$_3$ nor to MnTe. From the positions of these XRD peaks, we can estimate the spacing between the crystalline planes to be \sim1.36 nm, very close to the inter-SL distance of bulk MnBi$_2$Te$_4$ (1.356 nm) predicted by our first-principles calculations.

High resolution scanning transmission electron microscopy (STEM) was used to characterize the real-space crystalline structure of a MnBi$_2$Te$_4$ film (5 SLs). The high-angle annular dark field (HAADF) images [Figs. 1(a) and 1(b)] clearly show the characteristic SL structure of X$_2$Bi$_3$Te$_4$ compounds, except for the region near the substrate where stack faults and dislocations are observed. Figure 1(c) displays the intensity

Fig. 1. MBE growth and structural characterizations of MnBi$_2$Te$_4$ films. (a) Schematic illustrations of the MBE growth process of 1 septuple layer (SL) MnBi$_2$Te$_4$ thin film. (b) XRD pattern of a MnBi$_2$Te$_4$ (MBT) film grown on Si(111). (c) Cross-sectional HAADF-STEM image of a 5-SL MnBi$_2$Te$_4$ film grown on a Si (111) substrate. (d) Zoom-in view of (c) with the structural model of MnBi$_2$Te$_4$. (e) Intensity distribution of HAADF-STEM along Cut 1 in (c). (f) EELS spectra mapping along Cut 2 in (c). The pink curve shows the intensity distribution of the Mn L$_{2,3}$-edge along Cut 2 in (c).
profile along an atomic row across two SLs [Cut 1 in Fig. 1(c)]. One can see that the atomic contrast varies a lot at different positions in an SL. The contrast of an atom in an HAADF-STEM image is directly related to its atomic number. The intensity distribution along an SL is thus well consistent with the Te–Bi–Te–Mn–Te–Bi–Te sequence. The electron energy lose spectroscopy (EELS) [Fig. 1(f)] reveals the Mn \(L_{2,3} \) edges at \(\sim 645 \) eV. The intensity distribution curve of EELS at 645 eV [the pink line in Fig. 1(f)] taken along Cut 2 in Fig. 1(c) shows a peak at the middle atom of each SL, which also agrees with the MnBi\(_2\)Te\(_4\) structure.

The in situ angle-resolved photoemission spectroscopy (ARPES) was used to map the electronic energy band structure of the MBE-grown MnBi\(_2\)Te\(_4\) films. Figures 2(a)–2(d) show the ARPES bandmaps of the MnBi\(_2\)Te\(_4\) films with the thickness \(d = 1, 2, 5, 7 \) SLs, respectively, with the sample temperature at \(\sim 25 \) K (the lowest temperature that the sample stage can reach with liquid helium). The spectra were taken around the \(\Gamma \) point along the \(M–\Gamma –M \) direction of the Brillouin zone. The spectra of the \(d = 1 \) SL sample [Fig. 2(a)] shows a bandgap with Fermi level cutting the conduction band. The films with \(d \geq 2 \) SLs all show similar band structures [Figs. 2(b)–2(d)]. One can always observe a pair of energy bands with nearly linear band dispersion crossing at the \(\Gamma \) point forming a Dirac cone. Figures 2(e) and 2(f) show the momentum distribution curves (MDCs) and the constant-energy contours of the 7-SL sample, respectively, which exhibit archetypal Dirac-type energy bands. It is worth noting that the Dirac-type bands are quite different from the topological surface states of Bi\(_2\)Te\(_3\) [21,22]. The band dispersion observed here is rather isotropic, as shown by the nearly circular constant-energy contours, even at the energy far away from the Dirac point, which is distinct from the strongly warped Bi\(_2\)Te\(_3\) topological surface states [21,22].

The orderly and compactly arranged Mn atoms in MnBi\(_2\)Te\(_4\) are expected to give rise to a long-range magnetic order at low temperature. Figure 3(a) displays the magnetization \(M \) of a 7-SL MnBi\(_2\)Te\(_4\) film versus magnetic field \(H \), measured with a superconducting quantum interference device (SQUID) at different temperatures \(T \). The linear diamagnetic background contributed by the substrate and capping layer has been subtracted (the raw data are shown in Fig. S2 in the supplementary materials). The unit of \(M \) is the magnetic moment \(\mu_B \) per in-plane unit cell (2D U.C.), i.e. the average magnetic moment of each Mn atom multiplied by the number of SLs. \(H \) is applied perpendicularly to the sample plane. With decreasing temperature, hysteresis appears in the \(M–H \) curves and grows rapidly, exhibiting a typical FM behavior. The Curie temperature \(T_C \) is 20 K according to the temperature dependence of the remnant magnetization \(M_r = M(0 \) T) shown in Fig. 3(b). The \(M–H \) curve measured in-plane magnetic field has much smaller hysteresis than the curve measured with perpendicular one [see the inset in Fig. 3(a), which was taken from another 7-SL MnBi\(_2\)Te\(_4\) sample]. Therefore the magnetic easy axis is along the \(c \) direction [perpendicular to the (0001) plane]. Estimated from the saturation magnetization \(M_s = 8\mu_B/2D \) U.C., the
Mn atomic magnetic moment is about $1.14\mu_B$, which is much smaller than $5\mu_B$ expected for Mn$^{2+}$ ions. It suggests that Mn$^{2+}$ ions in the material may have a more complex magnetic structure than a simple uniform ferromagnetic configuration.

Ferromagnetism of the 7-SL MnBi$_2$Te$_4$ film is also demonstrated by Hall measurements. Figure 3(d) displays the Hall resistance R_{xy} of the 7-SL film grown on a SrTiO$_3$ (111) substrate vs H, measured at 1.6 K under different gate voltages V_g. The SrTiO$_3$ substrate is used as the gate dielectric for its huge dielectric constant (~ 200000) at low temperature.[26] The curves exhibit hysteresis loops of the anomalous Hall effect (AHE) with a linear background contributed by the ordinary Hall effect (OHE). The slope of the OHE background reveals that the sample is electron-doped with the electron density $n_e \sim 1.1 \times 10^{13}$ cm$^{-2}$, which basically agrees with $n_e \sim 8 \times 10^{12}$ cm$^{-2}$ derived from the Fermi wavevector ($k_F \sim 0.07$ Å$^{-1}$) of the ARPES-measured Dirac-type band. The hysteresis loops of the AHE confirm the ferromagnetism of the film with perpendicular magnetic anisotropy. The T_C obtained from the $R_{xy}-T$ curve is similar to that given by the SQUID data [Fig. 2(b)]. The H_c of the $R_{xy}-H$ hysteresis loops is however larger than that of the $M-H$ loops. Tuning the chemical potential of the film by applying different V_g, we observe obvious change in the anomalous Hall resistance. The sensitivity of the AHE to the chemical potential suggests that the AHE

![Image of magnetic and magneto-transport properties of MnBi$_2$Te$_4$ films.]

Fig. 3. Magnetic and magneto-transport properties of MnBi$_2$Te$_4$ films. (a) Magnetization vs magnetic field ($M-H$) of the 7-SL MnBi$_2$Te$_4$ film measured with SQUID at 3 K (red), 15 K (light green), 20 K (green), and 30 K (blue), respectively. H is perpendicular to the sample plane. The inset shows the $M-H$ curves measured with H perpendicular to (red) and in (blue) the sample plane (a different 7-SL MnBi$_2$Te$_4$ sample). (b) Temperature dependences of the remnant magnetization (M_r) and zero-magnetic-field Hall resistance (R_{xy}) of the 7-SL film, which give the Curie temperature (T_C). (c) $M-H$ curves of the 6 SL MnBi$_2$Te$_4$ film measured with SQUID at 3 K (red), 15 K (light green), 20 K (green), and 30 K (blue). H is perpendicular to the sample plane. (d) $R_{xy}-H$ curves measured at 1.6 K at different gate voltages. (e) $M-H$ curves of 4, 5, 6, 7, 8, 9-SL MnBi$_2$Te$_4$ films measured at 3 K and right above T_C (upper panels) and the differences between the curves at the two temperatures (lower panels). (f) Thickness dependences of M_r at 3 K, M_r difference at 3 K and above T_C (upper panel) and H_c (lower panel). (g) $R_{xy}-H$ curve of the 7-SL MnBi$_2$Te$_4$ film measured at 1.6 K with H up to 9 T. The blue arrows indicate the magnetic configurations at different H. Each arrow represents the magnetization vector of an SL. In (e) and (f), (1/2) means that the displayed magnetization has been multiplied by 1/2 for sake of comparison.
is mainly contributed by the Berry curvature of the energy bands induced by intrinsic magnetism of the material instead of magnetic impurities or clusters.\cite{27}

Noticeably, the 6-SL MnBi$_2$Te$_4$ film shows different magnetic properties from the 7-SL one. As shown in Fig. 3(c), the hysteresis (M_s and H_c) in the M–H curve of the 6-SL film is rather small even at 3 K, and M_s decreases slowly with increasing temperature. Clearly the film is not dominated by long-range FM order. The M–H curves of the 4–9-SL MnBi$_2$Te$_4$ films are displayed in Fig. 3(e), which will be analyzed below based on our theoretical results.

Next we discuss the structure, magnetism and topological electronic properties of MnBi$_2$Te$_4$ with the above experimental observations and our first-principles calculation results. To understand the mechanism for the formation of MnBi$_2$Te$_4$, we calculate the energies of a MnTe BL adsorbed on a Bi$_2$Te$_3$ quintuple layer (left) and a MnBi$_2$Te$_4$ SL (right). Valence states of atoms were labelled by assuming -2 for Te. Atom swapping between Mn and Bi results in stable valence states, thus stabilizing the whole structure. (b) Atomic structure of layered MnBi$_2$Te$_4$, whose magnetic states are ferromagnetic within each SL and antiferromagnetic between adjacent SLs. Insets show Te-formed octahedrons together with center Mn. (c) Band structure of the 7-SL MnBi$_2$Te$_4$ film, which is an intrinsic QAH insulator (band gap \sim52 meV), as proved by the dependence of band gap on the strength of SOC (inset). (d) Schematic band structure of MnBi$_2$Te$_4$ (0001) surface states, showing a gapped Dirac cone with spin-momentum locking. The energy gap is opened by the surface exchange field (m_z), which gets vanished when paramagnetic states are formed at high temperatures.

![Fig. 4. First-principles calculation results of MnBi$_2$Te$_4$.](image-url)

We calculate the energies of different magnetic configurations of MnBi$_2$Te$_4$ (see Fig. S3 in the supplementary materials). It is found that the most stable magnetic structure is FM coupling in each SL and AFM coupling between adjacent SLs (i.e. A-type AFM), whose easy axis is out-of-plane [Fig. 4(b)]. In MnBi$_2$Te$_4$, Mn atoms are located at the center of slightly distorted octahedrons that are formed by neighboring Te atoms. The FM intralayer coupling induced by Mn–Te–Mn superexchange interactions is significantly stronger than the AFM interlayer coupling built by weaker Mn–Te–Te–Mn super-superexchange interactions. Similar A-type AFM states were predicted to exist in other magnetic XBi$_2$T$_4$ compounds.\cite{28,29}

Figure 4(c) shows the calculated band structure of the 7-SL MnBi$_2$Te$_4$ film. We can observe the Dirac-like energy bands around I point, which basically agrees with the ARPES data, except for a gap (\sim52 meV) at the Dirac point. All the films containing larger than 4 SLs show similar band features with nearly identical gap values at the Dirac point, implying that the gapped Dirac cone is an intrinsic surface feature of the material. Purposely tuning down the SOC strength in calculations, the gap at first decreases to zero and then increases [inset of Fig. 4(c)], which suggests a topological phase transition and thus the topologically non-trivial nature of the gap. Actually our calculations on the system reveal that bulk MnBi$_2$Te$_4$ is a 3D AFM TI with Dirac-like surface states that are gapped by the FM (0001) surfaces with out-of-plane magnetization.\cite{28,29}

As illustrated in Fig. 4(d) and confirmed numerically, the gapped surface states can be described by an effective Hamiltonian $H(k) = (\sigma_2 k_y - \sigma_3 k_z) + m_z \sigma_3$, where σ is the Pauli matrix with $\sigma_3 = \pm 1$ referring to spin-up and spin-down, m_z is the surface exchange field.\cite{23,24} For films thicker than 1 SL, hybridizations between top and bottom surfaces are negligible. Thus, their topological electronic properties are determined by the two isolated surfaces, which have the same (opposite) m_z for odd (even) number of SLs and half-integer quantized Hall conductance of e^2/h or $-e^2/2h$, depending on the sign of m_z. Therefore, odd-SL MnBi$_2$Te$_4$ films are intrinsic QAH insulators with the Chern number $C = 1$, meanwhile even-SL films are the intrinsic axion insulators ($C = 0$) that behave like ordinary insulators in dc measurements but can show topological magneto-electric effects in ac measurements.\cite{21} However, when the TRS is recovered above T_C, the exchange splitting of the bands gets vanished while the SOC-induced topological band inversion remains unaffected. MnBi$_2$Te$_4$ thus becomes a 3D TI showing gapless topological surface states, which are exactly the band structure observed in the ARPES measurements performed at 25 K (above T_C).

The theoretically predicted magnetic configuration of MnBi$_2$Te$_4$ (Fig. 4(b)) is supported by our mag-
netic measurements. For an odd-SL AFM MnBi$_2$Te$_4$ film, whatever the exact thickness is, the net magnetic moment is only of 1 SL. It explains why the atomic magnetic moment of Mn estimated from the 7-SL MnBi$_2$Te$_4$ film (1.14μ_B) is much smaller than 5μ_B. The measured $M_s = 8\mu_B$ per 2D U.C. may have contributions from both the FM surfaces (supposed to be 5μ_B) and the AFM bulk which can give magnetic signals via canting or disorder. With the AFM arrangement of neighboring FM SLs, MnBi$_2$Te$_4$ films are expected to show oscillation in its magnetic properties as the thickness changes between even and odd SLs. We indeed observed even-odd oscillation in their magnetic properties as shown in Figs. 3(e) and 3(f). The remnant magnetization M_r, which characterizes long-range ferromagnetic order, is larger in odd-SL films than in even-SL ones. H_c shows similar oscillation below 7 SLs, but increases monotonously in thicker films. This is because the Zeeman energy in magnetic field (E_z) in an AFM film with FM surfaces is only contributed by the FM surfaces and thus invariant with film thickness, while the magnetocrystalline anisotropy energy E_{MCA}, which is contributed by the whole film, increases with thickness and thus becomes more difficult to be overcome by E_z. In addition, as shown in the 6-SL film [Fig. 3(c)] and other even-SL films, M_s is less sensitive to temperature than in odd-SL films. For a comparison, the differences between the M–H curves measured at 3 K and those measured above T_C are displayed in the lower panels of Fig. 3(e), which shows a clear even-odd oscillation [Fig. 3(f)]. A rapid increase of M_s with decreasing temperature below T_C is typical for ferromagnetic order. The magnetic signal from AFM canting, on the other hand, decreases or keeps nearly constant with decreasing temperature. Thus the odd-SL films obviously have more FM features.

The large inter-SL distance (\sim1.36 nm) is expected to give a weak AFM coupling between neighboring SLs, which can be aligned into FM configuration in a magnetic field of several tesla.$^{[30]}$ We carried out a Hall measurement of a 7-SL MnBi$_2$Te$_4$ film with H up to 9 T. As shown in Fig. 3(g) (the linear background of the OHE has been subtracted from the R_{xy}–H loop), besides a small hysteresis loop at low field contributed by the FM surfaces, R_{xy} resumes growing above \sim2 T and is saturated at a higher plateau above 5 T. The phenomenon is a characteristic of a layered magnetic material and presumably results from an AFM-to-FM transition (see the schematic magnetic configuration shown by the blue arrows in Fig. 3(g)). The FM configuration may drive the system into a magnetic Weyl semimetal phase.$^{[28,29]}$

In spite of the above evidences for an A-type AFM order of MnBi$_2$Te$_4$, there are still some observations that we have not yet fully understood. For example, the even-SL films show larger M_s than odd-SL ones above T_C, which is particularly clear in comparison of the 6 SLs [Fig. 3(c)] and 7 SLs [Fig. 3(a)] data at 30 K. We also notice that overall M_s shows a maximum around 6 SLs and 7 SLs at 3 K, regardless of even or odd of SLs. Another confusion is that the magnetic properties revealed by Hall effect measurements are not fully consistent with those revealed by magnetization measurements: R_{xy}–H loops always show larger H_c than M–H loops, and oscillatory behaviors are barely observed in the AHE data of the films of different thicknesses. These phenomena should result from the interplays between the complex magnetic structures and topological electronic properties of the unique layered magnetic material and require a comprehensive study combing various techniques to clarify. Moreover, we find that MnBi$_2$Te$_4$ films are relatively easy to decay under ambient conditions: M_s of a sample decreases significantly after it is exposed in air for a couple of days. This may also complicate the magnetization and magneto-transport measurement results. Finding an effective way to protect the material is crucial for the experimental investigations on this system and for the explorations of the exotic topological quantum effects in it.

The authors thank Wanjun Jiang and Jing Wang for stimulating discussions.

References

1. Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
2. Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
9. He Q L et al 2017 Science 357 294
21. Otrokov M et al 2017 2D Mater. 4 025082
22. Li Y Y et al 2010 Adv. Mater. 22 4002
25. Fu L 2009 Phys. Rev. Lett. 103 266801
27. Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
30. Huang B et al 2017 Nature 546 270
Supplementary Materials: Experimental Realization of an Intrinsic Magnetic Topological Insulator

Yan Gong (龚演)¹, Jingwen Guo (郭景文)¹, Jiaheng Li (李佳恒)¹, Kejing Zhu (朱科静)¹, Menghan Liao (廖孟涵)¹, Xiaozhi Liu (刘效治)², Qinghua Zhang (张庆华)², Lin Gu (谷林)², Lin Tang (唐林)¹, Xiao Feng (冯硝)¹, Ding Zhang (张定)¹, Wei Li (李渭)¹, Canli Song (宋灿立)¹, Lili Wang (王立莉)¹, Pu Yu (于浦)¹, Xi Chen (陈曦)¹, Yu Yu (于浦)¹, Menghan Liao (廖孟涵)¹, Xiaozhi Liu (刘效治)², Qinghua Zhang (张庆华)², Lin Gu (谷林)², Lin Tang (唐林)¹, Xiao Feng (冯硝)¹, Ding Zhang (张定)¹, Wei Li (李渭)¹, Canli Song (宋灿立)¹, Lili Wang (王立莉)¹, Pu Yu (于浦)¹, Xi Chen (陈曦)¹, Yu Yu (于浦)¹

¹State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
²Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
³Beijing Academy of Quantum Information Sciences, Beijing 100193
⁴Collaborative Innovation Center of Quantum Matter, Beijing 100084
⁵Institute for Advanced Study, Tsinghua University, Beijing 100084
⁶RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
⁷Stanford Center for Topological Quantum Physics, Department of Physics, Stanford University, Stanford, California 94305-4045, USA

**Correspondence authors. Email: yongxu@mail.tsinghua.edu.cn; qkxue@mail.tsinghua.edu.cn; kehe@tsinghua.edu.cn

Methods

Molecular beam epitaxy (MBE) growth of MnBi₂Te₄ films and angle-resolved photoemission spectroscopy (ARPES) measurements were carried out in one ultrahigh vacuum (UHV) system with a base pressure 1 × 10⁻¹⁰ mbar. Si(111) substrates were cleaned by repeated rapid heating (flashing) up to 1100°C until they show clean 7×7 surface reconstruction. SiTiO₃(111) substrates were processed by annealing in oxygen up to 930°C before they were loaded to the UHV chamber and outgassed at 400°C for half an hour. High purity Bi (99.999%), Te (99.9999%) and Mn (99.999%) were evaporated with standard Knudsen cells. Bi₂Te₃ films were grown on Si (111) or SrTiO₃(111) substrates that were kept at 200°C. Then Mn and Te were co-deposited on Bi₂Te₃ at 200°C with post-annealing at the same temperature for 10 min, which leads to formation of MnBi₂Te₄. ARPES measurements were carried out with unpolarized He-Iα photons (21.21 eV) generated by a Gammadata He discharge lamp and a Scienta-R4000 analyzer. The samples were cooled with liquid He-4 to ~ 25 K in measurements. The samples for SQUID and Hall measurements
were capped by a Te layer of ~ 20 nm before loaded out of the UHV chamber.

SQUID measurements were performed in a commercial MPMS-52 system (Quantum Design). The linear diamagnetic backgrounds of the substrates and capping layers were subtracted from all data.

Transport measurements were carried out in a closed cycle system (Oxford Instruments TelatronPT) (base temperature=1.5 K). Freshly cut indium cubes were cold pressed onto the sample as contacts. Standard lock-in techniques were employed to determine the sample resistance in a four-terminal configuration with a typical excitation current of 100 nA at 13 Hz.

First-principles density functional theory calculations were performed using the projector augmented wave method [1,2] and the plane-wave basis with an energy cutoff of 350 eV, as implemented in the Vienna ab initio simulation package [3]. The Perdew-Burke-Ernzerhof type exchange correlation functional [4] in the generalized gradient approximation (GGA) was employed together with the GGA+U method [5] to treat the localized 3d orbitals of Mn (U = 4 eV). The Monkhorst-Pack k-grids of 12 × 12 ×1 and 9 × 9 ×3 were selected for calculations of thin films and bulk MnBi$_2$Te$_4$, respectively. Structure optimizations were carried out with a force convergence criterion of 0.01eV/Å. Van der Waals corrections [6] were included to describe interlayer interactions in multi-layer and bulk MnBi$_2$Te$_4$.

Reflection high energy electron diffraction (RHEED)

![RHEED patterns of MnBi$_2$Te$_4$ along [112] and [110] directions, respectively. The sharp diffraction steaks indicate the two-dimensional morphology and high quality of the film.](image-url)
Fig. S2. Raw SQUID data of the 7 SL (A) and 6 SL (B) MnBi$_2$Te$_4$ film at different temperatures. Subtracting linear diamagnetic backgrounds from these data, we obtain the data shown in Figs. 3(a) and 3(b).
Theoretical study of magnetic ground states

Firstly, different spin configurations in monolayer MnBi$_2$Te$_4$ were considered, including FM, stripy AFM, zigzag AFM and in-plane AFM (Fig. S3). Their total energies (referenced to the FM state) are 0.0, 5.0, 5.4 and 6.4 meV, respectively. The calculated exchange interactions between the nearest-neighbor (J_1) and next nearest-neighbor spins (J_2) are $J_1 = -1.4$ meV and $J_2 = 0.2$ meV. These data suggest that the exchange coupling is ferromagnetic within the monolayer. Secondly, the out-of-plane ferromagnetism in monolayer MnBi$_2$Te$_4$ gives a total energy 0.25 meV/unit lower than the in-plane ferromagnetism, implying an out-of-plane easy axis. Thirdly, the A-type AFM bulk gives a total energy per formula unit 1.2 meV lower than the FM bulk, which is the magnetic ground state of MnBi$_2$Te$_4$.

![Fig. S3](#)

Fig. S3. Top view of different spin configurations of Mn atoms in monolayer MnBi$_2$Te$_4$: (A) FM, (B) stripy AFM, (C) zigzag AFM, and (D) in-plane AFM. Mn atoms form a triangular lattice. Supercell cells are denoted by dashed lines. Up, down and in-plane spins are denoted by black filled circles, open circles and arrows, respectively. Exchange interaction between the nearest-neighbor (J_1) and next nearest-neighbor spins (J_2) are denoted by red lines.
Band structures of MnBi$_2$Te$_4$ thin films

Fig. S4. (A)-(C) Band structures of MnBi$_2$Te$_4$ thin films with a thickness of (A) 3, (B) 4 and (C) 6 SLs. Their calculated band gaps are 50, 40 and 51 meV, respectively.

References